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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL MEMORANDUM X-248

AN ANALYSIS OF THE STABILITY OF SPINNING DISKS
DURING ATMOSPHERIC REENTRY*
By John D. Bird and Charles P. Llewellyn

SUMMARY

An analysis of the dynamic stability of spinning disks during atmos-
pheric reentry was made by numerical iIntegration of five-degree-of-freedom
nonlinear eqguations of motion on an IBV type TO4 electronic data proc-
essing machine and by study of linearized equations of motion. K was
established that high rates of deceleration may be obtained on reentry
as a result of the instability which occurs at high dynamic pressures
for sufficiently low spin rates. Considerable dispersion iIn impact point
may occur because of the relatively high lift capability of disk forms.

INTRODUCTION

For a period of years, spin about the longitudinal axis has been
employed to stabilize various forms of bullets and shells with a marked
degree of success. However, little attention has been given to the
dynamic behavior of flattened disk forms that travel edgewise and are
stabilized by spin about an axis normal to the direction of flight. The
purpose of this investigationwas to study the use of such spinning disk
bodies for reentry applications. In this work it was intended to explore
the behavior of spinning disk forms, determine the significance of spin
effects, and to study the dynamic-stability properties of such configura-
tions. In order to do this a series of calculations of the reentry of
such bodies were made by use of an IRM type TO4 electronic data proc-
essing machine for various conditions and configurations. Newtonian
aerodynamics were employed. Additional work was done by linear analysis
in which roots of the stability equations were determined for a range of
conditions.

SYMBOLS

The results are referred to the axes shown in figure 1 in which
positive directions of moments and velocities are determined by the
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right-hand rule. The symbols and coefficients are defined as follows:

X,Y,%

X,¥,2

u,v,w

b,q,Tr

V)] 2 < o DO

n

Ky 2 Ky

reference axes with origin located at the body center of mass
(these axes are not body axes in that they permit the-body
to spin about the X-axis with respect to the Y- and Z-axes)

space reference frame with origin fixed at surface of Earth
velocities along X-, Y-, and Z-axes, respectively, ft/sec

angular velocities about X-, Y-, and Z-axes, respectively,
radians/sec

angle of elevation of X body axis above a plane parallel to
the x,z plane, radians

angle in a plane parallel to the x,z plane between projection
of the X body axis and an axis parallel to the X-axis, radians

mass of body, slugs

moment of inertia about X-, Y-, and Z-axes, respectively,
slug-ft2

relative density factor, m/psd
nondimensional unit of time, tV/d
time, sec

mess density of air, slugs/cu ft
dynamic pressure, 1lb/sq ft
velocity of body, ft/sec

Mach number, V/a

speed of sound in air, ft/sec
body cross-sectional area, sq ft

diameter of body, ft
nondimensional radii of gyration, IX/de, IY/md2
acceleration due to gravity, ft/sec

period, sec
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time to damp to half-amplitude, sec

differential operator

force coefficient along X-axis, Fx/QS
force coefficient along Z-axis, Fy/QS
force coefficient along Y-axis, Fy/QS
mcment coefficient about Y-axis, My/qQsd
moment coefficient about Z-axis, MZ/Q,Sd
force along X-axis

force along Y-axis

force along Z-axis

moment about X-axis

moment about Y - axis

moment about Z-axis
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@ angle of attack, tan~! U
V2 + w2

7 flight-path angle, positive up

p = tanlW

Subscript:

o initial conditions

Bars over symbols indicate nondimensionalized factors. Dots over
symbols indicate partial derivatives with respect to time.

CALCULATIONS

Nonlinear

A series of calculations of the motion of spinning disk reentry
bodies were made on an IRM type 704 electronic data processing machine
for the spin rates and other conditions given in table L. Five degrees
of freedom were employed In this work. These calculations were made,
except as noted, for disks A and B having the cross-sectional shapes
shown in figure 2. The aerodynamic and mass characteristics and initial
conditions used in these calculations and referred to in table | are
given in tables II, III, and IV, respectively. Newtonian aerodynamics
were used to establish the stability derivatives. The equations of
motion employed in these calculations are given in appendix A.

A single calculation of the motion during reentry of a hypothetical
statically stable ballistic missile (shape C of fig. 2) was made for

comparison with the spinning disk shapes. The conditions for this cal-
culation are given in tables | and V.
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Linear

A series of calculations of the roots of the linearized equations
of motion of spinning disks (shapes A and B of fig. 2) were made to aid
in understanding the results of the nonlinear calculations. In these
calculations the spin rate, geometry, moments of inertia, and in some
cases the aerodynamic derivatives were varied to determine the sensitiv-
ity of the motion to these factors. The results were expressed as
periods and times to damp to half amplitude for the various modes of
motion. The conditions for which these calculations were made are
given in table VI along with the results. The aerodynamic derivatives
and mass factors referred to in table VI are given in tables II and III
except where otherwise noted. The linearized equations of motion are
given in appendix B.

RESULTS AND DISCUSSION

Presentation of Results

The results of the investigation are presented in figures 3 to 6
and in table VI. The nonlinear reentry calculations are covered in the
figures as plots of a, M, Q ¥, t, 2z and range plotted against
altitude for various spin rates, two moments of inertia, and two con-
figurations. The results of the linear calculations are given in
table VI. Periods and times to damp to half amplitude are given for
the four modes of motion. A comparison of certain linear calculations
with corresponding nonlinear calculations is made in table VII.

Discussion

An examination of the results of the reentry calculations for the
spinning disks and a comparison with the statically stable ballistic
missile (shape C) indicates that the behavior of the two is markedly
different. (See figs. 3 to 6.) The gyroscopic influence of the spin-
ning disk combined with the aerodynamic static instability influences
the motion in angle of attack to the extent that much greater angles of
attack are experienced at 100,000 feet and below for the spinning disks
than for the statically stable body. The spinning disks experience a
continuing precessional motion about the wind vector throughout the
flight as can be seen from the plots of ¥ against altitude. (See
figs. 4 to 6.) The precessional rate is much greater for the less
stable cases which pitch to relatively high angles of attack during
reentry. (See figs. 4 and 5.) These cases have smaller spin rates
and hence less arngular momentum with which to resist the unstable aero-
dynamic moment. As a result a greater precessional rate is required to
obtain gyroscopic equilibrium.



A behavior in angle of attack which is of particular interest is
evident for the thin disk body. (See fig. 5.) In the case of the low
spin rates, large angles of attack are developed from 120 to 30,000 feet.
Below 30,000 feet the angles of attack are again comparable or less in
magnitudg to those at reentry. An examination of the Mach number his-
tory for.these low spin rate cases indicates that there is an extremely
rapid deceleration as the angle of attack becomes large (about 80g for
calculation 10) followed by a region that more nearly approaches con-
stant velocity near the ground. (See fig. 5(b).) This effect is not
evident for the more stable high-spin-rate cases. The two most stable
cases for the thin disks encounter a severe heating experience in that
they impact at a Mach number of 12 or greater. The more blunt disk
form that has a higher minimum drag coefficient exhibits the behavior
in agg)le of attack to a lesser extent than the thin form. (See figs. 4
and 9.

An interesting feature of the performance of the disk forms during
reentry is the relatively large dispersion that occurs as a result of
the lift capability. (See figs. 4 and 5.) This effect is evident in
both the range and lateral displacement. Much less lateral displacement
is obtained for some cases than for others. This effect is associated
with the orientation of the model in precession as reentry is made.

Linear Calculations

The linear calculations lend support to the general behavior shown
by the reentry calculations. (See table VI.) A comparison of the lin-
ear and nonlinear calculations as to stability at 50,000 feet is given
for shapes A and B in table VII. The results for shape B agree well in
the linear and nonlinear cases as to the pd/2V for instability. Less
good agreement is shown for shape A. It is evident from these cases
that the existence of an abrupt increase in angle of attack at the lower
altitudes is evidence of an approach to an unstable behavior as indi-
cated by a negative root for an altitude of 50,000 feet.

An examination of the roots from the linear calculations shows
that instability is caused by a single root for the cases investigated.
A pair of complex roots changes to real roots, one of which is unstable.
This mode of motion then is simple divergence in angle of attack caused
by the large static instability at high dynamic pressures.

CONCLUSIONS

An analysis of the dynamic stability of spinning disks™-during
atmospheric reentry leads to the following conclusions:
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1. High rates of deceleration may be obtained for reentering spin-
ning disks as a result of the instability which occurs at higly dynamic
pressures for sufficiently low spin rates.

2. General agreement was obtained between linear and nonlinear cal-
culations for the spin rates at which angle-of-attack divergence occurs.

3. Considerable dispersion in impact point resulted becauée of the
11Tt capability of the disk forms.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., August 5, 1959.



APPENDIX A
EQUATIONS OF MOTION USED | N THE NONLINEAR CALCGULATIONS

The equations employed in this portion of the analysis are in the
form frequently employed in ballistics work. They may be derived by
resolving the body axis equations of motion along the X-, Y-, and
Z-axes shown in figure 1. These X-, Y-, and Z-axes are different from
body axes in that the Z-axis is constrained to a plane parallel to the
xz ground reference system plane, and in that the body is free to spin
about the X-axis. The X-axis i1s always alined with the axis of sym-
metry of the body.

Consider a view of the axis system along the X-axis with the body
axes Yp and Zp displaced from Y and Z by an angle ¢

Zy,

For the principal axes the equations of motion with respect to the body
axes are:

Fx,p = n(ib - roVb + qbwb) )
Fy p = m(¥, - ppwy, + Tpup) b (A1)
Fz, b =n(% - agp + Ppvp) )
)
My v = Ix,uPp - (IY,b - IZ,b)qbrb
My p = Iy, pdp - (IZ,b - Ix,b)rbpb ; (A2)
Mz,p = Iz,0Tb - (IX,b - IY,b)qub

o ho1 ™



where Fx, Fy, and Fy; My, My, and My; u, v, and w; p, ¢, and r;
and Iy, ly, and Iz are the forces, moments, linear velocities,
angular velocities, and moments of inertia for the X-, Y-, and zZ-axes.

Expressing the components of these equations in terms of the
XYZ system gives

Fx,p = Fx
Fy p = Fy cos § + Fy sin ¢ (A3)

FZ,b = —FY sin ¢ +FZ COSs ¢

U.'b-—-u
vy, =V cos §+wsing ()
w, = =v sin § +w cos §
My b = Mx \
My, b =My cos#+MZ sin # , (A5)
Mz b = My sin @ + Mg cos #
Py =P
gp =qcos f +rsing (46)
rbz-qsin#'l'rcos#
Ix,0 = Ix
Iy p = Iy (A7)
Iz,0 = 1z

Substituting these expressions into the body-axes equations of motion,

grouping the sine and cosine parts, and assuming rotational symmetry
where Iy = Iy gives
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Mx'Ixﬁ=o

[Mz - Iy(* - of) - (IY - IX)qp]sin g+ My - 15(q + =)

,+ (IY - IX)r?]cos g=0 > (a8)

EMY + Iy(§ + f) - (IY - IX)rp]sin g+ [MZ - Iy(f + af)

- (IY - IX)qp]cos $=0

Fy =m(a -rv+qgw) =0
[FZ -m(v'r+v¢.5+pv—qu)]sin¢+ [FY - (¥ + wh -pw+ru)]cos¢=0

[—FY - m(~v - w¢ + pW - ru)Jsin P + [FZ -m(w - v + pv - qu)]cos =0

(A9)

Making the kinematic substitution ¢ = p - q tan e, equating the coeffi-
cients of the sine and cosine terms to zero which must be the case in
order to satisfy each equation, and making appropriate selection of the
force and moment terms in terms of gravity and aerodynamics gives the
complete equations of motion. The My equation goes to zero for con-

stant spin rate p which is the case of interest for this problem.

The force equations are as follows:

X-force :
m(i - rv + gw) - mg CcoS ¥ cos 6 - QS<CX@a + er %%) =0 (A10)

Y -force :
m(v - gv tan © + ru) * mg cos ¥ sin 6 - QSCy = O (A11)

Z-force:
m(w - qu t gv tan 8) *+ mg siny - Q,S(CZ[3 ¥+ CZq %%) =0 (A12)

CIN By el



The moment equations are as follows:

Y -moment :

Iyq t r(IXp - Iyq tan § - QSd(“Cna“ sin tan~} ¥ Cmq %%) =0 (A13)

Z-moment:
Iyf - q(Ixp - aly tan 6) - QSa (Cnaf" cos tan™h ¥ + Cp %‘%) =0 (A1k)
where the following kinematic relations hold
é =T
- _~4
V= cos 6
X =Ucos €cos ¥y -v SINE cos ¥ -w sinvy
y = usin€+tvcos 6
Z=ucC0S 6 siny -v sind siny *+w cos ¥
Vet R g2 ; (A15)
o = tan"l —
T
_ -1 w
B = tan ¥

Q=;pV2=%pu2+v2+w2)
2

p = £(x)
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The force and

X-force:

Y-force:

Z-force:

AFPENDIX B

EQUATIONS OF MOTION USED IN THE LINEAR CALCULATIONS

Y -moment :

Z-moment :

By using the following relationships in equations (B1) to (B5)

P =

o]}
it

Ds
i

M

pd
Y

<le

moment equations for small disturbances are:

I
o

mi - QS (cxOL v 1, -12“%) - mrV

mv t pVvSCy T mgd =0

. d
m - QS(CZB W + Czq %v) + mgy =0
Iq—QSd(C LA 9@.)+r1p:o
Y mB vV oV X
» - qsa + _-Td)
Tyr - Q {Cncc% Cny. 2v) —alxp =0

_qd
1= 3
7=

V
v o= OV

oT
'._a _ _om
W—5¥— 23
V-

oT

]

(B1)

(B2)

(B3)

(B4)

(B5)
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=

K pdd
K2 = X K@ = Iy
md?2 md2

the nondimensionalized equations of motion are obtained as

2ug - Cx @ - Cx, -g- - 2ub = 0 " (B6)

iy - Cx
by - Oy + X6 =0 (B7)

< - CZ <
2uf - CzP + —= ¥+ Cx¥ = 0 (B8)
_2uKY2§? - cmBE + c%q } + huKXEBia: 0 (B9)
epKYE'_e' - Cna& - C—’Z‘?-B + huKXE\:bf) =0 (B10)

Solving equations (B6) to (B10) simultaneously yields

06 + ApDD + AsD* + ayDP + A0 +AgD + AL = 0

where D = (f; and A, to A7 are the coefficients of the character-
istic equation given by

e = (2 (0, + G + 20y) + oy + o]
Ay = 2K, 2420 CXI‘+2 Cx. [2Ky2 (Cg, + 2
3 = 2w Ky"20q \F + 20) - O |2Ky®(Czg + 2Cy)

2
+ Gy + cnr]‘- 2Cy (EKY Cz + Cmg + Cnr)

- Cz (Cny + Cmg) + C%CZQ} - 1 (CngCay + 6i°Ky '5°)
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Ay = “2KY2{ECY [:CZB (2Pex, + oy + Cng) + Oty (Cop + Cmg)
- qu,(CXr + lm) - Cmﬁcz(ﬂ + CZi3 Exc,(cnr + Cmq)- QC%(% + EM):]
+ Cmﬁ(lmCX - CZqCXa,)} + uzcmq[:Cnr(% CZB + % C);L +j CY)Q.

cx. _
- Cnal(-—Exr— + 2}.l>] + 52}.1)+KX)+p2(CXGI + CZB + QCY) - —2]-'- chmBCZanr

o N

2
A5 = pky {CY EXa(CmBCZq - C2gCny. - CZBCmq,
+ 2Cy C (2u+—c§£>-i+ucc - 2uCyCy C
ZB Ny, 5 X mg X Xq, mg
Cx .
{“a o+ %) e o )
1 1 -
-5 Cnr [CY(CXG' + CZB) + 5 CZBCXGL]
1 1 1

16pIK, 452 [ECY (Cxy + Czg) + CZBCXOJ

-+

+

2
Ag = }J.Cm_B{CY (czqcnOL + 2Ky“CxCx, + CxCn,)
C
¥ CX[% CnpC%g, - Cna<—)2{l: ¥ 2“)]
h-2 - 1 Cxp
+ 1Oz, [CY <15HKX pCx, Cch%)} t2 % Ejnor. 2 (CmBCZq

- CquZB> + % CanXCL<CquZB - Cmﬁciq)‘l

Cx
A7 = CmgCxCy Ej na<2“ * 2r> - 3 CanX“]



TABLE |

CONDITIONS FOR THE NONLINEAR CALCULATIONS

15

Aerodynamic
saleulation Spin derivatives Inertial Initial
"~ number rate, see tables 11 constants | conditions
radians/sec| and V) for | (see table III)| (see table IV
onfiguration.
1 220 A E G
2 110 A E G
3 55 A E G
4 40 A E G
5 220 A D G
6 220 B E G
7 110 B E G
3 55 B B G
9 28 B E G
10 14 B E G
11 0] C * H
*

Inertial constants are given in table V.
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TABLE II

2
AERODYNAMIC DERIVATIVES USED IN THE CALCULATIONS

Configuration
cross section

oo

Configuration
cross section

-0.50

-0.25

0.40

-0.08

0.20

-0.20

-0.95

-0.03

0.20

-0.16

0.23

-0.10

CD-F‘UIP

G



MASS AND DIMENSIONAL CONSTANTS USED IN THE CALCULATIONS

TABLE III

Constants D E

Mass, slugs . 100 100
Iy, slugs-ft2 . 230 378

Iy, slugs-ft2 . 200 189

5, sq ft s 2l
a, ft . 5.5 5.5

17



TABLE IV

INITIAL CONDITIONS

L

5

Condition G H 4

6
h, ft.. 400,000 400,000
Xg, ft -400,000 -400,000

Yo, ft 0 0 .
2o, Tt 0 0

%o, Tt/sec 8 oo 8,802
Yo ft/sec 19,420 21,249
Zo, ft/sec 0 0
Vo, ft/sec 21,000 23,000
6, deg.. -12.5 -12.5
Yo, deg.. 0 0
a,, deg.. 10.0 10.0
y, deg -22.5 -22.5

7
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TABLE V

INERTIAL, CONSTANTS AND AERODYNAMIC DERIVATIVES
FOR HYPOTHETICAL BALLISTIC MISSILE (SHAPE C)

Mass, STUQS. . & v & v v & 4 v s 0 v s n v s a n s 106
Ix, slug-fie 80
Iy, slug—ﬁ_2 ........................ 900
Iz, slug-f2 = L. 900
S < L 6.1
¢ i e T T T T T 2.79

Axial-force coefficient . . . . . . . . . . . . .. . .. .. _0540
Normal-force-coefficient slope with angle of attack . . . . . -4.00
Pitching-moment-coefficient slope with angle of attack , , . -0.565

Pitchdamping . . . .« & & & v v v v f e e e e e s e e s 0
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‘TABLE VI

RESULTS OF LINEAR CALGULATIONS

Derivoei’tives dass factors od . 1st mode 2d mode 3d mode Lth mode
configurations | 3ee table IIT | 2v P /e P I T1/p » /2 of T/

a D ,0%2 2,100 3,545.74

A D 016 2,100 4,423.65

A D 014 2,100 3,050.0

A D .012 2,100 -1,289.84

A D .010 2,100 -29.585

A D .008 2,100 7

A hi! .00k 2,100 <16.01

A D .002 2,100 -15.26

A D .00L 2,200 -13.09

A D 000" 2,100 -15.05

A E .032 2,100, 2,855.88

A E 016 2,100 3,260,32

A E .008 2,100 3,362:46

A E OOk

A E .002

A E .01

A E . 000

B D .032

B D 016

B D .008

B D .00k

B D .002

B D .001

B D 000!

B E 032

B E 016

B E 008

B E .00k -

B E .002 -

B E .00L -

B E 000! . 28,018.0 gy 1,311.9 | -|23.46-
ana ¢, = 51 E .08 17,548.3 3,369.4 233,96 81.92| -
ana G, = -1 E .008 16,708.6 [ oo 3,112.8 20k 45 37L.681 -
ana ¢, =0 E .008 18,066.9 | cmermw 3,363.7 22,22 3,210.5 | =|memmmm
ana ¢, =02 .008 18,149.6 | e==—==| 3,361.% 22k, 22| «6,080.9 | «fems-—-
and C“r = 1.0 E .008 18,144.2 | -eeee- 3,363.7 22465 -48,364 IS PR—
ana cnu—-o. E .008 2,043.7 | ~emaea]|  3,450.9 85.86 1,542.2 | ~|eeenmm
ana Cp =0 E .008 3,3629 |l13.k0| 1,501.0 -
and G =0.0 E -8 5,572.9 | wmcemn| 33,5241 122.86]  1,485.5 | «|anmem-
and cmq . E .008 -88.61 | -eem - 3,362.7 21596 115.6( | =|wrmmmm
and cmq_-o. E .008 -23352 | -mmmeu| 3,360.6 222.76 269.0: | -|mrmm—
and cmq_ 0 E 008 816.43 | coaac 3,3%0.0 224,15 23,001.5 | =|mmane-
ana ¢y = 0.0 E 008 442,33 | cemace 3,314.0 223.99] ~1,431.9 | =f~=mn—-
ana Cmq =04 E .008 153,40 | smmman 3,3561.4 222,01 -2788. | ~}-w—onm
ana Gy = -5. E 008 -31.32 | -oeem- 3,362.5 175.34 351 | =|amac—m

A E .008 —.g % T7.10 | -e=mmeme 57.0: 933

A E .008 - -1.63 102.60 | comeeeee 142.2¢ 1.55

A E .008 376‘790'58 4538,918 .4 1,154.91 220,492.3 | =[~m~u=-

A E -008 | ,350,000] ====m==n= 15.89 x 10 13.90 x 10 | 72,937.0/62.05 X 101 [ =|=m=um-
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\R{oﬁve wind

X (Spinaxis)

/— Ground reference system

-y

XK g

(a) Euler angles.

Figure 1.- Axis system used in calculations.

Q+C=T
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Plane of disk

Relative Wind

Y

X (Spin axis)

(b) Aerodynamic angles.

Figure 1.- Concluded.
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Angle of attack, OC, radians

W
O

Mach number, M
5

100 200 300 400x10
Altitude, -x, ft

Figure 3.- Comparison of the reentry behavior of shape B at 14 radians
per second with that of shape C.
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o

Y

Angle of attack, OC, radians
o] 4]

100

Lateral displacement, z, ft'
b b oh&d Lo

Figure 4.- Comparison of the
spin rates.

Dxi0®

reentry behavior of shape A for various
Calculations 1 to 4.
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Mach number, m
Ny w
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Q
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D
[}

Dynamic pressure, Q, Ib/sq ft

)]
Q

Time, t, sec.

Y
(@]
T

00 200 300 200x10°”
Altitude, -x, ft

(b) Mach number, dynamic pressure, and time.

Figure 4.- Continued.
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Angle of attack, OC, rodians

300

¥, radians

2001

1001

[SETIENN
e
\,}E

T

o

cement, z, ft

La tecd
C
\\l

x10”

Figure 5.- Comparison of the reentry behavior of shape B for various
spin rates. Calculations 6 to 10.
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Mach number, M
N
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(a) Angle of attack ¢ and lateral displacement.

Figure 6.- Comparison of the reentry behavior of shape A for two ratios
of roll to yaw inertia. Calculations 1and 5. p_ = 220 radians/sec.
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